Interleukin (IL)-6 induction of osteoclast differentiation depends on IL-6 receptors expressed on osteoblastic cells but not on osteoclast progenitors

نویسندگان

  • N Udagawa
  • N Takahashi
  • T Katagiri
  • T Tamura
  • S Wada
  • D M Findlay
  • T J Martin
  • H Hirota
  • T Taga
  • T Kishimoto
  • T Suda
چکیده

We reported that interleukin (IL) 6 alone cannot induce osteoclast formation in cocultures of mouse bone marrow and osteoblastic cells, but soluble IL-6 receptor (IL-6R) strikingly triggered osteoclast formation induced by IL-6. In this study, we examined the mechanism of osteoclast formation by IL-6 and related cytokines through the interaction between osteoblastic cells and osteoclast progenitors. When dexamethasone was added to the cocultures, IL-6 could stimulate osteoclast formation without the help of soluble IL-6R. Osteoblastic cells expressed a very low level of IL-6R mRNA, whereas fresh mouse spleen and bone marrow cells, both of which are considered to be osteoclast progenitors, constitutively expressed relatively high levels of IL-6R mRNA. Treatment of osteoblastic cells with dexamethasone induced a marked increase in the expression of IL-6R mRNA. By immunoblotting with antiphosphotyrosine antibody, IL-6 did not tyrosine-phosphorylate a protein with a molecular mass of 130 kD in osteoblastic cells but did so in dexamethasone-pretreated osteoblastic cells. Osteoblastic cells from transgenic mice constitutively expressing human IL-6R could support osteoclast development in the presence of human IL-6 alone in cocultures with normal spleen cells. In contrast, osteoclast progenitors in spleen cells from transgenic mice overexpressing human IL-6R were not able to differentiate into osteoclasts in response to IL-6 in cocultures with normal osteoblastic cells. These results clearly indicate that the ability of IL-6 to induce osteoclast differentiation depends on signal transduction mediated by IL-6R expressed on osteoblastic cells but not on osteoclast progenitors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PCR Amplification of Reverse - transcribed mRNA

We reported that interleukin (IL) 6 alone cannot induce osteoclast formation in cocultures of mouse bone marrow and osteoblastic cells, but soluble IL-6 receptor (IL-6R) strikingly triggered osteoclast formation induced by IL-6. In this study, we examined the mechanism of osteoclast formation by IL-6 and related cytokines through the interaction between osteoblastic cells and osteoclast progeni...

متن کامل

Transcriptional induction of cyclooxygenase-2 in osteoblasts is involved in interleukin-6-induced osteoclast formation.

Interleukin-6 (IL-6) induces osteoclast-like cell (osteoclast) formation in a dose-dependent fashion in cocultures of mouse bone marrow cells and osteoblastic cells when soluble IL-6 receptor (sIL-6R) is present. Simultaneous treatment with submaximal doses of IL-1alpha and IL-6 with sIL-6R caused marked induction of osteoclast formation and PGE2 synthesis. These effects were suppressed by addi...

متن کامل

Cytokines synergistically induce osteoclast differentiation: support by immortalized or normal calvarial cells.

Conditionally immortalized murine calvarial (CIMC) cells that support differentiation of precursors into mature osteoclasts were isolated. All six CIMC cell lines supported osteoclast differentiation in response to 1,25-dihydroxyvitamin D(3) or interleukin (IL)-11. CIMC-4 cells also supported osteoclast differentiation in response to tumor necrosis factor (TNF)-alpha, IL-1beta, or IL-6. The res...

متن کامل

Combination of IL-6 and sIL-6R differentially regulate varying levels of RANKL-induced osteoclastogenesis through NF-κB, ERK and JNK signaling pathways

Interleukin (IL)-6 is known to indirectly enhance osteoclast formation by promoting receptor activator of nuclear factor kappa-B ligand (RANKL) production by osteoblastic/stromal cells. However, little is known about the direct effect of IL-6 on osteoclastogenesis. Here, we determined the direct effects of IL-6 and its soluble receptor (sIL-6R) on RANKL-induced osteoclast formation by osteoclas...

متن کامل

The osteoclastogenic molecules RANKL and RANK are associated with periprosthetic osteolysis.

Extensive osteolysis adjacent to implants is often associated with wear particles of prosthetic material. We have investigated if RANKL, also known as osteoprotegerin ligand, osteoclast differentiation factor or TRANCE, and its natural inhibitor, osteoprotegerin (OPG), may be important in controlling this bone loss. Cells isolated from periprosthetic tissues containing wear particles expressed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Experimental Medicine

دوره 182  شماره 

صفحات  -

تاریخ انتشار 1995